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1.     Introduction 

A  major problem  in  picture   interpretation and de- 

scription  is  the extension of  the basic  ideas and methods 

developed   for string grammars   to  structures which  are 

interconnected  in more general ways.    A  number of dif- 

ferent  approaches have been  studied  in  the  literature 

(see   the   review paper [1]).     The most recent,   and also 

the  most  general and   flexible  theory has been  intro- 

duced by Pfaltz  and  Rosenfeld  in  [.2].     They  apply  the 

rewriting procedure   typical  of  string grammar  to gen- 

eral   labelled graphs or   "webs".     Examples of web gram- 

mars are given in [2]   for  trees,   series-parallel  net- 

works,   Pascal  triangles  and other interesting classes 

of   graphs. 

The  extension of  string   language  theory  to webs 

is by no means  trivial;   there are  special  problems as- 

sociated with  it.     Examples  are   the   "embedding"  of  the 

rewritten webs [2],   ana   the  impossibility of  incorporat- 

ing  negative contextual  conditions into  the   rules. 

This   latter   fact is due   to  th3 unboundness  of  the  con- 

text  of  a   vertex  in  a   graph   (see   Section  2  of   this 

paper). 

The web grammar  approach has several  potential  ad- 

vantages.     Graph  theory  constitutes a well  developed 

and  well   studied  field,   in which,   perhaps with  some 

generalization,   the  various notations  introduced  in 

the  picture  grammar   literature  can be unified.     At  the 

same   time,   the possibility of deriving  families of 

graphs by   rewriting  initial  graphs according   to  finite 

sets of  rules may be  useful  to graph  theorists as well, 
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because  this  method both standardizes  and  generalizes 

the  induction procedures  frequently used  in graph 

theory.     Important properties of   the derived class 

of graphs can often be proved by  simple  inspection 

of  the rules,   as  in   the  case of  the Euler  relation 

for plane    graphs   (see Section 4) . 

Section  2 of  this paper discusses  the definition 

of a web grammar.     In particular,   it  is  shown  that 

the addition  of an  "applicability  condition"   to the 

rules of   the  grammar  does not  change   the  generative 

power of  the grammar,  because  an equivalent grammar 

without applicability conditions can always be found. 

A new class of web grammars,   called   "monotone web 

grammars",   that  seems  to be more  general   than context- 

sensitive web grammars,   is then  introduced.     (The 

proof of equivalence of  the monotone and context- 

sensitive classes of grammars,   given by Chomsky in 

[3]  in  the case of  string  languages,   does not apply 

to web languages.)     The concept of  indirect generation 

of a  language  is   then introduced.     Both  these generali- 

zations allow more  freedom in designing web grammars, 

while still   leaving  it decidable whether or not a  given 

web belongs  to the  language of a  given web grammar. 

In Section  3  a  grammar  for  nonseparable graphs 

is first presented.     The notion of separability web 

of a graph  is  then  introduced,   and a  grammar for  gen- 

erating  such webs     is shown.     Finally,   a   grammar   for 

generating   the graphs having  a  given  separability  tree 

is given.     Section 4  gives grammars  for  various classes of 
planar graphs;   some  of  them  simultaneously generate a  dual 
graph.     Finally,   it  is shown   that   the   four color conjecture 

for planar graphs can be reduced   to  the equivalence of  the 
languages of  two web grammars. 

4* 
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2.       Web  Grammars 

In this  section,   we  introduce web  grammars and  the 

related  terminology.     Our definition   is  very  similar 

to  that of Pfaltz   and  Rosenfeld;   the  only difference 

is   that we  allow  a   rewriting  rule   to be  applied only 

if  a   specified  condition  is  satisfied.     However,   the 

introduction of  applicability  conditions  is only a 

matter of convenience   in  expressing  contextual   re- 

strictions.     In  fact,   we will  prove   that  the generative 

power  of web grammars  is  not  increased   in   this way. 

Let  V be   a   finite   set,  which we will   call   the 

vocabulary;   the   elements  of  V will  be   called  symbols. 

A   directed web W over  Visa   briple   (N       F   ,   A   )   where WWW 
N,,  is   a   set of   vertices.   P..  is   a   labelling   function W         W J  
from N, into V,   and A,,  is  a  set of  ordered   pairs of W W 
elements of N    which are  called  arcs.        If  v has only 

one  element,  webs  are  clearly  equivalent  to  graphs. 

Given   a web W  -   (N   ,   F   ,   A   )   over  V,   the web 

S  ■   (^c'   ^c   ^c^   over   the   same  V  is   called   a   subweb 

of   W   if: 

a) N     is   a   subset   of  N,. s w 
b) FS(X)   =   FW(X)    if   X       Ns 

c) A    consists of  just   those pairs  in A    whose 

terms  are both   in  N   . 

Undirected webs  are  defined  analogously;   they   can bo 

regarded as a   special  case of directed webs   in which, 

between any pair of  vertices P and Q,   either  no  arc 

exists,  or both of  the  arcs   (P,   Q)   and   (Q,   P)   are  pres- 

ent.     All  of  the web grammars defined   in  the   later 

sections  of this  paper  are   for undirected webs. 
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A web grarotttar ü i^ u  finite entity which uliows  us, 

in  general,   to define  an   infinite  set of webs,   called 

the   language  of  G.     Formally,   G   is  a   triple   (V,   I,   R). 

V is   the   vocabuliry]   it  coasists  of  two disjoint   parts, 

a   nonterminal  vocabulary V    and  a  terminal   vocabulary 

V ,      I   is  a   finite   set  of   initial webs over  V.     R  is   a 

finite   sot  of  rewriting   rule».      Every  rewriting   rule, 

if  applicable,   specifies what  changes must  be  made   to 

a  given   web.     Formally,   a  rewriting  rule   is  a  quadruple 

(a,   C,   ß,   E)   where  a,P   are webs,   C  is a   logical   function 

called   the   contextual   condition   of   the  rule,   and   E   is 

a   set  of   logical   functions  called  the embedding  of   the 

rule.     The   rule  is applicable   to  a web W  if   a  is   a 

subweb  of W  and  C  is   true.     The   effect:  of   the  application 

of   the  rule   La  to  replace  a   subweb cv of W with   the web 

ß.     The   logical  functions of  E   specify  the  embedding  of 

ß   in  W-a;   that  is,   they   specify whether  or   not  each 

vertex  of W-^  is  connected   to  each   vertex  of   S.     Note 

that  E  must  be well-defined   for   every web  W   to  which 

the   rule   is  applicable.     Both C  and b wiiJ   typically 

depend ^n   the   labels,   or  the  number,   of  vertices  of  W 

connected with   some  vertex of   :>;   however,   in  general 

they  can  depend on   the   entire  W  and  on   the   particular 

subweb  a of w which  is  to b«   rewritten« 

The   language  L     generated  by  G  consists  of   those 

webs  on  V     that  can  be  derived   from   the   initial  webs 
T 

by  applying   the  rewriting rules   any  number  of   times, 

in  any order.     Two grammars  are   equivalent   if  they 

generate  the  same  language.     For  example,   the   following 

web  grammar  G(V,   I,   R),   with  one  symbol  and  one   re- 
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writing rule, has as language the set of directed binary 

trees with least point: 

VN =^?  VT = {t];  V = [t} 

I " {ti 

R =  -, { •   ;   in W  there must not   exist more  than one 

arc   from    L, ; »     ;   all  the  vertices of W that were 
1       Rl     R2 

connected with L    are connected with R1 ,   and no  vertex 

is  connected with R9)r«     In fact,   it can be  immediately 

proved by induction  that  in any web  generated by this 

grammar,   there   is a  unique path  from  the   initial  point 

to  any other point.     Furthermore,   the applicability 

condition prevents  the  creation of   vertices   from which 

there are arcs   to more   than  two  vertices.     Conversely, 

any binary  tree with k+1  vertices  can be derived from 

a  suitable tree with k  vertices by adding one arc and 

one   vertex. 

The embeddings  used  in all  the   rules considered  in 

this  paper will  always be of the  same  type as  that in 

the  example  just given:   an arc between  a and W-a is 

never created or deleted,  but simply  shifted   to a  vertex 

of  ß.    How the  shifting   is done will be  specified with 

the  aid of indices assigned  to  the  vertices of a and  ß; 

we have denoted   these by  letters of   the  form L.    (ith 

vertex of the   left member of the  rule)   and R. .     The 

embedding is defined by a  function  from  the  set of 

vertices of or into the  set of vertices of  ß.     If a 

vertex P of ß   is  the  image of a  collection of vertices 

of a,   all of   the  arcs between W-a and  these  vertices 
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of a in  the original web W become arcs  to or  from P  in 

the  rewritten web. If   a  vertex of  B is not  the  image of 

any vertex of a,   there are  no  arcs between  it  and w-a 

in  the  rewritten web.     A  useful  special   case  is  that 

in which  the    function  is one-to-one   (as  it  is  in  the 

binary tree example);   such an embedding will be called 

normal.     If all  the   rules  of a web grammar G have  normal 

embedding,   the grammar will be called normal. 

As  remarked at  the beginning of  this  section,   we 

have  introduced  the   function C  in order  to  allow an 

explicit  statement of contextual conditions   (*)   on the 

application of a  rewriting  rule.     If the  desired con- 

dition  is a   "positive"  one   (for example:   a  vertex of 

W-a with  a given   label must be  connected by an  arc   to 

a  given vertex of a) ,   it  is  very easy to embody  this 

context in  the rule by enlarging  its  left member   (see 

[2],   pp.   614-616).     On  the other hand,   if  the  contextual 

condition  is   "negative",   as  in our binary  tree  example, 

there  is no way of expressing  it by enlarging  the webs 

of   the  rule.    This  is one of   the  important differences 

between  string grammars and web grammars.     In  fact,   in 

string  languages,   the  number of symbols which can  pre- 

cede or  follow a given  symbol  is finite,   since  the 

the alphabet is  finite.     Thus  a  rule forbidding a 

symbol  can be replaced by a  finite  set of  rules  requir- 

ing each of the other  symbols.    On the other hand,   in 

web  languages,   there  is no  limit on the number of 

(*)     If one uses a web grammar  for parsing webs  rather 
than generating  them,   the contextual  conditions 
become embeddings   (and  vice  versa);   this  is a- 
nother reason why contextual conditions are de- 
sirable. 
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vertices which   can be  connected with  a  given  vertex, 

so   that   a  finite  number of  x-ules  cannot  in general be 

sufficient.     In  simple cases   a   slightly more  compli- 

cated  grammar without negative  contextual conditions 

can often be  constructed.     In  the  general  case,    the 

following   theorem  shows how  contextual  conditions  can 

always be  included  in  the  embedding   part of  the   rule, 

so that   the  equivalence  to   the Pfaltz  and Rosenfeld 

definition  is  proved.    However,   the  resulting grammars 

are  somewhat   tricky,   and  the   normal  embedding,   if 

present,   is   lost. 

Theorem   1.     Given  any web grammar  G,   a web grammar H 

equivalent  to  G  can always be   found,   such  that   the 

rules of H have  no applicability  conditions   (i.e.,   the 

logical   functions  C are always  true). 

Proof.     Let  G =   (VG,   IG,   RJ   and  VG =  VNG U V^.     The 

terminal   vocabulary of H must obviously be equal   to 

Vm„.     The  nonterminal  vocabulary of H  consists  of  V „ 
TG ' NG 

together with an extra  symbol   *.     The   initial  webs  of 

H are obtained  from the webs  of  I     by  adding  two 

isolated   vertices   labelled  *   to  each  of   them.     The 

rules of  H are  as   follows: 

a)     A   set of   rules   that can be obtained  from  the   rules 

of   G by   the   following  procedure:     An  isolated 

vertex labelled *  is added  to   the   left and   right 

members.     Logical  function C  is always  true.     The 

embedding is  the same,   as  far as  vertices not 

labelled  *  are  concerned.     Furthermore,   an  arc  is 

added  from  the  vertex  labelled *  of  the right 
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member to the other vertex labelled * if the con- 

textual condition of the corresponding rule of G 

is not satisfied, or if the two vertices labelled * 
o 

were  already connected, 

b)     The   rule *  * - 0 

If web  W t L   ,   then  W c Lu.     In  fact,   given  any  dori- 

vation  of  W in G,   it  is possible  to derive W by  also 

applying  first  the   corresponding rules  of H and   finally 

rule   (b) .     Conversely,   if W ^ L    then W   ' L_.     In  fact, H G 
given  any derivation of W in H,   rule   (b)   must  have been 

applied  exactly once,  because no vertex   labelled with 

the nonterminal  symbol *  is  created in  any  rule,   and 

furthermore  it must be  the   last rule applied,   because 

all  the other rules  require  a  *-vertex.     Moreover,   any 

time a  rule of H has been applied,   the  condition  for 

the application of  the cc rresponding rule of G must 

have been  satisfied,   since  otherwise an  arc between the 

two  vertices  labelled * would have been  created,   which 

would  never have been removed and which would have  pre- 

vented  the application of  rule   (b).     Thus a  parallel 

derivation of W in  G can be   found.  // 

Different  classes of web grammars  can be defined 

according   to what  restrictions are  imposed on   the  re- 

writing  rules.     If  for every  rule   (rewriting  a  into 6) 

a  vertex P exists  in a such  that a -{?}   is a  proper 

subweb  of  ß   (i.e.,   one point only is rewritten,   and 

not erased),  and  if  the connections between ot -{P]   and 

W-a are not changed by E,   the web grammar is called 

context-sensitive.     If we  compare context  sensitive 

web grammars with context  sensitive  string grammars 
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we see   that  the   latter are  interesting because  they 

are  very general,   and at  the   same  time  they have   the 

following  remarkable properties   ([3],   pp.   143-144); 

a) the  derivation of any  string of  the  language  is 

representable by a directed tree; 

b) the  problem of whether or not a  given string be- 

longs  to  a  given  language  is solvable. 

The  second property is particularly  important 

for practical  purposes.     It   follows directly from 

the  fact   that  under application of the  rules,   the 

lengths  of strings  are monotonically  non-decreasing, 

so that  only a   finite number  of derivations need be 

tested  for any given  finite   length  string.    For 

string grammars,   Chomsky   ([3],   p.   14 5)   has proved 

also  the converse:   if all  the rules of a grammar 

G are of  the  type cp - Y with   Y at  least as long as 

cp,   then   it is  possible  to  construct  a   context sensi- 

tive grammar G'   equivalent  to  G,     In   the grammar G' 

a set of  rules  is   substituted   for every  rule of G,   such 

that  if   the  first  rule of the  set is  used,  all  the 

others must be  applied in sequence,   or else a termi- 

nal  string cannot be achieved.    The  same  type of 

reasoning does  not  seem to work  for web grammars. 

In fact,   if a   rule of G applies  to  two different  sub- 

webs Of'   and  a"  of a web W,   the  sequences of  rules of 

G'   applied to  a'   and  a" may   "interfere".     Thus con- 

text-sensitive web grammars clearly have  the essential 

properties   (a)   and   (b)   above,  but  they  seem to be 

comparatively less powerful.     In some  grammars that 
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we  report  in  this paper,   we have  found  it  convenient  to 

use  only  the  restriction   that in any   rule,   ß   has  no  fewer 

vertices   than     a.     Such  grammars will be  called monotone.(*) 

As mentioned above,   this  condition  is  sufficient  for 

assuring decidability.     In  some cases  this  restriction 

too   is  strong,  because   it  is desirable  to  create 

"auxiliary"   vertices  in   the derivation   (for example,   in 

Theorem  1) ,   and   in a  monotone grammar thf.y cannot be 

erased.     On  the  other hand,   in  some  cases  the   "auxiliary" 

vertices have a   special   significance cf  their own;   for 

instance,     in  the grammar  for planar  graphs  given  in 

Section 4,   they consf.tute    a     "dual  graph".     In  these 

cases we prefer  to preserve   the monotonicity of  the 

grammar,   and  to  consider  the desired webs as  subwebs 

of  the webs generated by   the grammar.     More   formally, 

v/e  say that a web language L is  indirectly generated 

by a  grammar G     if: 

a) the  vocabulary V    of  L is a   subset of   the  terminal 
L 

vocabulary V      of G; 
TG 

b) the  language L conists of  just  the  subwebs of  the 

terminal webs generated by G whose  vertices are 

labelled with  symbols belonging  to V  ; 
Li 

c) in any web generated by G,   in which N  vertices are 

labelled with  symbols of V  ,   the  number of  vertices 

labelled with  symbols of V -V.   cannot  exceed a   fixed G     L 
valua M^. 

Note that property (c) assures that it is always decidable 

whether a given web belongs to a language indirectly 

generated by a given grammar. For instance, in Thecrem 

(*) Note ^.hat a normal grammar is always monotone. 



- 11 - 

1,   if G  is   context  sensitive   (monotone),   a  context 

sensitive   (monotone)   grammar without  applicability 

conditions   that  indirectly generates L    can be   found 

by   simply   substituting   for  rule   (b)   of  the  grammar H 

the   following  rule: 

*       *     _    t     t • • • • 

where t is the only terminal symbol of H that does 

not belong to V. . 
L 

A   special  case of  context   sensitive web grammars 

is  that of  context  free web grammars.     In  such  a  gram- 

mar,   there  are  no applicability  conditions on  the  rules, 

and  the   left member of  each   rule  consists of only one 

vertex. 
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3 . Separable  and  nonseparable  graphs 

A connected graph   (*)   G  is called  separable  [4] 

if  it has   two  subgraphs F    and  F5,   having  at  least one 

arc,   such   that  every  arc of G belongs   to  either F.   or 

F-,  while  F.   and  F-  have exactly one   vertex V in  com- 

mon.     Vertex  V will  be  called  a   cut  vertex.       If   two 

such  subgraphs  cannot  be  found,   the  G  is  called non- 

separable.     Nonseparable graphs  can be also defined 

by means of a  web grammar,   as  proved   in   the   following 

theorem: 

Theorem 2;     The context  sensitive,   normal  web grammar 

of  Fig.   1,   with  one  terminal   symbol  and without ap- 

plicability  conditions,   generates exactly  all   connected 

nonseparable       webs   (**) . 

Proof;     Only  nonseparable webs.     Whitney   ('. 5,',   Th.   G)   has 

proved that a  necessary and  sufficient condition  for 

a  graph  to be   separable  is  that   three  distinct  vertices 

A,B,C exist  such  that  every   (simple)   oath   from B  to C passes 

through A.     Reasoning by induction,   both   initial webs 

are  nonseparable.     Furthermore,   if  a  web   is nonseparable 

before  the  application of any   rule,   it   is  also  nonsep- 

arable  afterwards,   because  the  application of  any  rule 

does  not erase any   possible path. 

All   nonseparable webs.     Conversely,   Whitney   (' rl,   Th.   19) 

has  shown  that  it  is  possible   to build  up any  connected 

nonseparable  graph   containing more   than  two arcs by 

(*)       In  this  and   in  the next  section we will  always be 

concerned with connected graphs having at  least one 

arc,   and without  loops. 

(*♦)     The  above definitions relative   to graphs can be 

immediately extended  to webs. 
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starting with a circuit and adding to it arcs or chains 

of arcs.  In our grammar, the only nonseparable graph 

with one arc belongs to the initial set, while an 

initial circuit of any length can be constructed from 

the initial criangle by recursive application of rule 

2.  The addition of an arc is performed by rule 1, 

and the addition of a chain of any length can be ob- 

tained by applying first rule 1 and then rule 2, 

recursively. // 

If a graph G is separable, its components F.. and 

F can be either separable or not; if they are separable, 

they can in turn be broken up into components, and so 

on.  Since the sum of the numbers of arcs of the com- 

ponents is equal, at any stage, to the number of arcs 

of the entire graph, we must eventually reach a situ- 

ation in which all the components are nonseparable. 

These subgraphs of G are called the nonseparable com- 

ponents of G. Whitney ([5], Th. 12) has proved that 

the nonseparable components do not depend on the order 

in which the decomposition takes place.  This decom- 

position can be represented as a   partition of the arcs 

of the graph; a component is a subgraph that contains 

exactly all the arcs of some element of the partition. 

Cut vertices belong to the vertex sets of at least two 

components.  The components are "connected" at cut 

vertices, but they never form a "circuit of graphs"(*) 

([5], Th. 17).  A graph will be called arccomposite 

(*)  That is, it is not possible to find a cyclic se- 

quence of components such that any one of them has 

just one cut vertex in common with its predecessor 

and its successor. 
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if at least one of its components is a one-arc graph, 

i.e., consists of two vertices and one arc connecting 

them; nonarccomposite, otherwise.  Note that a non- 

separable graph is arccomposite only if it is a one-arc 

graph. 

Given any connected graph, we define the separa- 

bility web of the graph as follows:  The vocabulary 

is {i, c}. Vertices labelled "i" are internal vertices 

while vertices labelled "c" are connection vertices. 

Internal vertices are in correspondence with the non- 

separable components of the graph, while connection 

vertices correspond to cut vertices. An arc is traced 

between a connection vertex and an internal vertex of 

the separability web if the corresponding cut vertex 

belongs to the corresponding nonseparable component. 

The separability web of a gi/en graph is unique, as 

an immediate consequence of the uniqueness of the 

decomposition. 

The following theorem characterizes, and gives 

a web grammar for, separability webs: 

Theorem 3:  a) A web on the vocabulary {i, c} can be 

regarded as a separability web if and only if no 

circuit of arcs is present, every arc connects vertices 

labelled with different symbols, and every vertex which 

is connected with only one other vertex is labelled 

"i". b)  The normal, context free grammar in Fig. 2 

generates just the set of all separability webs. 

Proof:  a) Only if part.  This part is a direct con- 

sequence of the definition. 
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If  part.   Let N be  the maximum number of  vertices  con- 
(*) nected with any  i-vertex.    A complete graph  on N 

vertices  is associated with every  i-vertex,   and a 

one-to-one  correspondence  is defined between   some 

vertices of  this graph  and all  the  c-vertices of  the 

web  connected with  the  i-vertex.     A  graph  G  is  then 

constructed by  coalescing  the  vertices of  the  complete 

graphs correspond   to  the  same  c-vertices of   the 

web.     The complete  subgraphs are nonseparable,   and 

by hypothesis no  circuit of graphs  is  present.     There- 

fore,   according   to Whitney   ([5],   Th.   17(1),    (3)),   the 

complete  subgraphs  are   the  nonseparable  components 

of G.     Thus  the given web  is  the  separability web of 

a  graph  G. 

b)     Webs generated by  the grammar in Fig.   2  clearly 

satisfy  the hypothesis  of  part (a)   and  therefore   they 

are  separability webs.     Conversely,   any  separability 

web can be generated  in this way.     In  fact,   reasoning 

by   induction,   assume  that  the grammar generates all 

the   separability webs with k  i-vertices.     Given a 

separability web W with k+1  i-vertices,   an  i-vertex 

P  connected  to only one  c-vertex must exist  -  for, 

no c-vertex is of degree   1,   and  in a  graph without 

circuits at  least one  vertex of degree   1 must 

exist.    Let Q be  the  c-vertex connected   to P.     If Q 

is of degree  greater  than  2,   then W   -   {P]   is  a 

separability web with k  i-vorticcs and  can be  gen- 

erated by the grammar.     The   last  rule applied  to Q 

in  the derivation of W  -   {P]  must be  rule 4.     Applying 

(*)     If  this number is  1,   then  let N =   2. 
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the   rules  3  and  2  just before   this  rule,   it  is  possible 

to derive w  as well.     If Q  is  of degree  2,   let R be 

the  other  i-vertex connected  to Q.    The web W   -   fp,   Q] 

is a   separability web with  k  i-vertices and can be 

generated by  the grammar.     The  last rule  applied  to 

R  must be   rule  2.    Applying   the   rules  1,   4  and  2  just 

before  this  rule  it  is possible  to derive W  JS well.   // 

We now give a more complicated example of a web 

grammar. 

Theorem 4;     Given any  separability web   (having more 

than one   vertex)   as  initial web,   the monotone,   normal 

web grammar G in Fig,   3   indirectly generates all   the 

separable  graphs having   the given  initial  web as 

separability web.  [Note  that   rule  10  in  this grammar 

has  a   "negative"  applicability condition.     The  language 

directly generated by G consists of  the   separable  graphs 

with  two  extra  vertices,   labelled b and a,   for every 

nonseparable  component.     The b-vertices are  connected 

with  all   the  vertices of  the  components,   while  a-vertices 

are  connected only with  the  corresponding  b-vertices.] 

Proof;     All  separable graphs,   etc.    Given  an I-vertex 

P of  the  initial web,   if  the corresponding component 

is  a one-arc graph,   and  if P  is connected  to one c- 

vertex   (two  c-vertices),   rule     2     (rule 4)   must be 

applied.     If  the component corresponding   to P has more 

than one  arc and one,   or  two, or more  than   two c-vertices, 

rules     1   ,     3   ,   or     5   ,   respectively,  must be  used   first. 

Prom  the   initial   triangle,   any nonseparable component 

with more  than one arc can  then be derived;   the method 

is   the  same as that proved  for  the grammar   in Fig.   1. 
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Rule 8  in Fig.   3  is   the  equivalent  of  rule   1  in Fig.   1, 

while  rule  6  or  7  is   the equivalent of  rule  2,   depend- 

ing on whether   the  new  vertex  that must be   inserted   into 

the component  is a  cut  vertex or not.     Note   that  the 

connections of   the  c-vertices with   the B-vertex assure 

that  rules  6,   7  and  8  are  applied  to   vertices belonging 

to   the  same  component.     Furthermore,   in   rule  6,   the 

connection with   the   inserted  vertex  is  shifted  from  the 

A-vertex  to   the B-Vdrtex of  the   component.     When  the 

entirt component has been built   up,   as  proved  in Theorem 

2,   all  the  corresponding  cut  vertices  have been  inserted, 

and  thus  rules  9 and   10  can be  applied,   because  no  vertex 

is  now connected  to   the A-vertex of   the   component. 

Only  separable  graphs,   etc.     Let  us  consider a derivation 

of  a web W.     To  any  I-vertex of   the   initial web,   one of 

the  rules  1-5  must, have been applied.     If  rule  2 or 4 

was used,   rules  6,    7  and  8  cannot have been  applied   to 

the b-vertex,   so   that   the   final   rule   10 must have con- 

cluded  the  generation  of  a  one-arc  component.     If  rule 

1,   3  or  5 was  used,   any  application of  rules  6,   7 or  8 

preserves   the  nonseparability of   the  component,   as proved 

by Theorem  2.     When   finally  rules 9  and   10  apply  to  con- 

vert  the nonterminal   symbols A  and B   into   the  terminal 

symbols a  and b,   rule  6  must have  already  inserted  all 

the  cut  vertices of   the   component,   since  otherwise   the 

applicability  condition of  rule   10 would  not be  satisfied. // 

It  is  very easy  to  see   that   if we  do  not allow  in- 

directness,   no  monotone  grammar  exists   for   this   language. 

In  fact,   there  exist graphs which have  fewer  vertices  than 
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their separability webs.     For instance,   the  separability 

web   of the graph   ,     ,      T     ,     is    ^    ?     ,     *?     ,  . 



-  19  - 

4.      Planar graphs 

A graph is called planar if it can be mapped onto 

the plane   (or on the sphere:   [5]  p.   355).    The  regions 

into which it divides the plane will be called meshes. 

This definition is topological in character; however, 

some purely combinatorial equivalent definitions can 

be found.  Kuratowsky    [6] has proved that a graph is 

planar if and only if it contains no subgraphs having 

either of  two  specific  forms.    Whitney [5] has proved 

that a graph is planar if and only if it has a   "dual". 

MacLane  [4] has shown that a graph  is planar if and 

only if a  collection of  "basic"  circuits can be  found, 

such that every arc of the graph  is considered in this 

collection exactly twice.     In this  section, we give a 

characterization of planar graphs as indirectly gen- 

erated by a monotone web grammar  (or,  as remarked in 

Section 2,  as directly generated by a web grammar 

which allows vertex deletion). 

Whitney's definition of dual is clearly independent 

of the particular mapping of  the graph on the plane. 

However,   his definition of dual coincides  ([5], Th.  30) 

with the well-known definition in which a  vertex of 

the dual  corresponds  to a mesh of  the given plane   (*)   con- 

nected graph,  and  two vertices of the dual are connected 

with an arc  if  the two corresponding meshes are adjacent 

to the  same arc.    This construction provides a one-to-one 

correspondence between the arcs of the plane graph and 

(*)    A planar graph is called  plane  if it is considered 

as mapped on  the plane. 
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thoseof  the dual graph,   and between  the vertices  of   the 

plane    graph and the meshes of  the dual.     Furthermore, 

the dual  is plane and  the dual of  the dual  is  the  given 

plane graph.     Some difficulties arise  in  this definition 

of dual   if only graphs without multiple edges  are  con- 

sidered.     This  is  the case  if,   as  in our definition of 

a web  in Section  2,   arcs are defined as pa. rs of  vertices. 

This definition  is  the  most  natural,   and  the  most often 

used in graph  theory.     However,   if some  vertex of  the 

graph  is of degree  two,   i.e.,   if some arcs are  serially 

connected,   the above construction gives  a dual with 

multiple edges.     Thus,   unless otherwise  stated,   we con- 

sider only plane graphs  and webs without  serially con- 

nected arcs.    However,  our results could be easily ex- 

tended  if a  definition  allowing multiple edges were 

given.     On  the other hand,   no   problem exists  if   the  same 

mesh  is  adjacent   to one  arc on both  sides;   a   loop  is 

then generated  in  the dual.     This happens  in particular 

if a  vertex of degree one  exists  in   the graph. 

Given a   plane graph,   for every  vertex P  it  is  pos- 

sible  to   specify a  cyclic  sequence of meshes by examining, 

in countejclockwise order,   the  meshes adjacent  to  P. 

Two   successi-e meshes of   the   sequence are  both  adjacent 

to an arc connected  to P.     Note  that  this  sequence  can 

contain  the  same mesh more  than once,  possibly     even 

in  successive positions. 

We  can  now prove  the   following  theorem: 

Theorem   5;     a)  A  connected plane graph G is  separable 

if and c ily  if a  vertex P exists,   such  that  its  sequence 
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of meshes contains the same mesh more than once. Fur- 

thermore, P is a cut vertex of G. 

b) A plane graph G is arccompositc if and only if an 

arc (P, Q) exists which is adjacent to the same region 

on both sides . 

Proof;  a) If the same mesh is present more than once 

in the sequence of meshes of vertex P, it means that 

a closed curve C passing through P can be traced, which 

does not intersect any other vertex or arc of the graph, 

and which partitions the graph in two subgraphs with at 

least one arc, having only the vertex in common.  Thus, 

by definition, G is separable and P is a cut vertex. 

Conversely, if G is separable, it can be constructed by 

letting two vertices of two disconnected graphs coalesce 

in P, so that a curve C as above can be found, 

b) The one-arc subgraph S is a nonseparable component 

of G if and only if no circuit exists in G to which 

the arc of S belongs ([4], p. 24).  This is equivalent 

to saying that a closed curve intersecting only (P, Q) 

can be found. // 

Given a plane graph, assume that a simple closed 

plane curve exists with the following properties: 

a) The curve intersects the plane graph only at vertices. 

[As a consequence of this first property, the segment of 

curve between two adjacent intersection vertices belongs 

entirely to a single mesh, and the number of intersection 

vertices and meshes is equal.] 

b) Different segments of the curve belong to different meshes. 

If such a curve exists, it will be called a 

cut, curve of the plane graph.  Note that property (b) 

is dual to the simplicity of the curve. 
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Given a plane graph and a cut curve, the vertices 

and meshes of the graph are evidently partitioned into 

three classes: inteinal, beundary and external vv;rticcs 

and meshes, while only internal and external arcs can 

be distinguished.  We can now prove the following Lemma. 

Lemma 1;  Given a nonarccomposite plane graph G with- 

out loops, and a cut curve, it is always possible to 

find an internal arc with the following properties: 

a) One vertex and one mesh ad]acent to the arc are 

a boundary vertex and a boundary mesh (*); 

b) the other vertex (the graph is without loops) is 

either an internal vertex or a boundary vertex 

adjacent to the first vortex; 

c) the other mesh (the graph is nonarccomposite) is 

eithar an internal mesh, or a boundary mesh adjacent 

to the first mesh. 

Proof:  At least one arc satisfying condition (a) is 

connected with every boundary vertex, since otherwise 

two adjacent segments of the cut curve would belong 

to the same mesh.  Furthermore, at least one of these 

arcs (and actually two, if more than one internal arc 

exists at that vertex) is adjacent to a boundary mesh, 

as is easy to see by examining the sequence of meshes 

of the vertex.  Conditions (b) and (c) too arc clearly 

satisfied by some of these arcs if the number of bound- 

ary vertices (and meshes) is three or less, because in 

this case the first vertex (mesh) is adjacent to all 

the other vertices (meshes). Now we assume that the 

number of boundary vertices is four or more, and that 

(*)  Clearly the mesh belongs to the sequence of meshes 

of the vertex. 
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no  arc   satisfying condition   (a)   also  satisfies conditions 

(b)   and   (c) .     If an arc  satisfies   (a)  but does  not   sat- 

isfy   (b),   it means  that  it  connects   two nonadjacent 

boundary  vertices.     Let   (P,   Q)   be  an arc which  satisfies 

condition   (a)   (i.e.,  P  is a  boundary  vertex  and   the   first 

mesh M  is  a  boundary mesh)   but which does not  satisfy 

condition   (c)   because  the   second  mesh N is  a  boundary 

mesh  not adjacent  to M.     Let  R and  S be  the boundary 

vertices   that  are  the endpoints  of   the   segment of  the 

cut   curve belonging  to  N.     Thus   R /  P and S ^  P,   and 

either   R or  S   (or both),   say  R,   is  not  adjacent   to  P, 

since  if P,   R,   S were pairwise adjacent  they would have 

to be  the  only   three boundary vertices.     Therefore mesh 

N is  adjacent  to P and   to a vertex R not adjacent   to  P. 

Thus  a  new  plane graph can be obtained by adding   the 

arc   (P,   R)   to G.     In conclusion,   if  condition   (b)   or 

(c)   is  not   satisified,   a  new plane  graph G'   can be con- 

structed  in which every boundary  vertex is connected by 

an  internal  arc with at   least one nonadjacent boundary 

vertex.   (*) 

We will  now show  that  G'   cannot be  plane,   so   that 

we  have  reached  a  contradiction.     Fig.  4   shows   this 

fact  in   the  case of  four boundary vertices.     On   the 

other hand,   it   is  possible   to  prove   that  if   such  a 

plane graph  G'   exists  in  the  case of n   (n   > 4)   bound- 

ary  vertices,   it exists  also   for   n-1  vertices.     In  fact, 

given a   plane graph  G'   with   n boundary  vertices,   if 

redundant  arcs  are  erased,   any arc   (P,  Q)   is   the only 

(*)      If  it   is  condition   (b)   which   fails   to  hold   for  every 
boundary vertex,  no construction  is necessary. 
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internal arc connected with either P or Q   (or both), 

say P.     If R  and S  are   the boundary  vertices adjacent 

to P,   vertex Q  cannot be adjacent  to both of them   (other- 

wise n = 4).     Let Q be  not adjacent   to  R.     Therefore 

the vertex P  can be erased and  the arc   (P,   Q)   can be 

replaced by  the arc   (R,  Q),  obtaining a  plane graph 

with   (n -  1)   boundary  vertices.     // 

We can now give web grammars for various classes 

of planar graphs. The simplest one is introduced by 

the  following   theorem. 

Theorem 6;     The nermöl,   morotone web grammar of Fig.   5 

indirectly generates exactly all  nonarccomposite planar 

graphs.    More  precisely,   this grammar directly generates 

exactly all  nonarccomposite planar graphs  and   their 

duals   (without serially connected arcs,   or  arcs  in 

parallel;   see   the  remarks at the beginning  of  this 

section).(*) 

Proof;    All  planar graphs,   etc.     Given any  such graph, 

let us consider a  plane representation  of   this graph. 

We  shall  construct  a  copy of  this granh  and of  its 

dual by applying  the  rules of   the  gi    .mar  in Fig.   5. 

We will prove by  induction  that  it   is  possible   to  fina 

a   sequence of  cut  curves  such   that   the  external part of 

the graph  represents  the part already  copied,   and  that 

it  is possible   to  construct  the  next  step  in  the copy 

by  applying  a   rule  of   the grammar.     More precisely,   at 

a   given  stage  of application of   the grammar,   the ver- 

tices of  the  copy  that  correspond  to external  vertices 

are  labelled   "a",   the boundary  vertices are   labelled 

"A",   the  vertices of the dual which correspond  to ex- 

(*)     If a  planar graph  has more  than one plane  representation, 
and  thus more   than one dual   (i.e.,   if  it  is not   triply 
connected) ,   all  the possible duals  can be derived with 
this grammar. 
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ternal  meshes are  labelled   "b",   and boundary mesh dual 

vertices  are  labelled   "B".     All   external  arcs and  the 

corresponding arcs  in  the dual  are  present   in  the copy 

web.     The  cut  curve  is   represented  in  the  copy web by 

a   circuit of  arcs connecting   the A-  and B-vertices. 

Every A-vertex   (B-vertex)   is  connected  neither with 

any A-vertex   (B-vertex)   nor with  any b-vertex   (a-ver- 

tox),   but   it   is connected with  exactly  two B-vertices 

(A-vertices)   and possibly with  some  a-vertices   (b-ver- 

tices) .     The   first cut  curve   is   found as crossing   the 

two   adjacent  vertices  and   the  two adjacent  meshes of 

any  arc  adjacent  to   the   unbounded mesh of   the  plane 

graph.     Furthermore   this   first  cut  curve  must  contain 

all   the  graph,   except   the  initial  arc.     Correspondingly, 

rule   1   is  applied  to   the   initial  web.     Now,   given any 

cut   curve,   assume  that   the above described web has 

already been  constructed.     Then,   according   to Lemma   1, 

an   internal   arc  can be   found,   of  one of   the   following 

four   types: 

a) one   vertex and one  mesh  adjacent  to   the  arc  are  on 

the boundary,   the  other   vertex and  the  other  mesh 

are   internal. 

b) the   two  meshes of   the  arc  are adjacent boundary 

meshes,   one  vertex   is a  boundary  vertex,   the  other 

is an   internal  vertex. 

c) two  adjacent boundary  vertices,   one boundary mesh 

and  one   internal  mesh 

d) two  adjacent boundary  vertices and  two  adjacent 

boundary meshes. 
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In  the  above  cases (a,  b,   c,   d),    grammar   rules  2,   3,   4, 

5  respectively  apply.     Rule   6  must be  applied   insLead 

of  rule   5  if only one  internal  arc was   present.     It 

can be   immediately  verified   that  the  new A-B  circuit 

corresponds   to  the  cut curve obtained by adding   the 

arc under  consideration   to   the   internal   arcs,   while 

the copy   still   satisfies  the  above   characterization. 

In Fig.   6 we   see   the A-B  circuit and  the cut  curve 

superimposed,   before and after   the   application  of   the 

rules.     Note   that  the new cut   curve  never  passes   twice 

through   the   same   vertex or  mesh,   because   the new  ver- 

tices  and  meshes   just  introduced cannot,  by  the  choice 

of  the  new  arc,   have been boundary   vertices  and meshes 

of  the  old  cut  curve.     Every  application of a  rule  of 

the grammar  introduces an arc  into   the  copy.    Thus 

for a graph with  n  arcs  it   is  necessary   to  apply   the 

rules of   the  grammar exactly  n   times.     At  the end, 

i.e.,   after  application of  rule  6,   two  disconnected 

webs have been  constructed:   a   copy of  the given  graph, 

labelled with   "a",   and a copy of  its dual,   labelled 

with  "b". 

Only planar graphs,   etc. We will   prove by  induction   that 

during   the  application of  the  grammar,   the graph  and   its 

dual  can be  mapped  onto  the  plane.     Let  us  assume,   in 

fact,   that  at  a  given  stage,   a web W has been generated 

in which  the   vertices  labelled A  and  B   form a  circuit, 

with A's  and B's  alternating.     All   the  other vertices, 

labelled  a  and  b,   if any,   are  outsiae.   Let  us consider 

now a web  W   that  is obtained by  connecting  all   the 

A-vertices of W with an  internal  vertex,   labelled  c. 
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and  connecting with an  arc  the pairs of B-vertices ad- 

jacent  to  the  same A-vertex in  the  circuit.      (If  there 

are  no A' s and B's,   the  c-vertex need  not be  added, 

so   that W'   is   the   same as  W.)     We  assume   that   the  sub- 

graph  on  the  vertices of W1   labelled  c,   A or a   is a 

nonarccomposite  plane  graph G,  while   the  subgraph on 

the  vertices  labelled B  or b corresponds   to   its dual. 

Clearly,   the circuit of A- and B-vertices  is  a   cut 

curve  of G.    These  assumptions are  certainly  true if 

only  rule  1 has been applied  to  the  initial web.    Now 

apply  any of rules  2-6   to   the web W.     It  is  immediate 

to  verify  that   the above characterizations  of webs W 

and W'   is applicable   to   the new web.     In particular, 

rule  2  increments by one each  the number n of A- and 

B-vertices,   rules  3  and 4 do not change  n,   rule  5 de- 

cremonts n by one,   while  rule 6 decrements  it by two. 

However,   any  rule  allows  the  new arc  it  introduces  to 

be mapped  into  the  plane.     Thut   the  new graph G is 

still   plane,   and   is  still  nonarccomposite,   because  the 

added  arc is adjacent  to   two different meshes   (Theorem 

5(b)) .     But at   the   last   step,   there  can be  no A's and 

B's  left,   so  that W   is   the  same as W,   and  G  is  the 

graph which was  indirectly generated by   the  grammar.  // 

Note  that  every rule  has nonterminal  symbols in 

its  right member,   except  rule 6.     Thus  rule  6 must be 

the   last rule used.     But if rule 6  applies,   the A-B 

circuit is eliminated,   so  that  it can be  applied only 

once. 

Fig.   7  shows  an example of the  application of  the 

grammar in Fig.   5  to  the  simplest possible nonarccomposite 
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planar graph.     Here   the  rules  applied,   in   succession, 

to  obtain stages   (a-f)   were   (1),   (2),   (4),    (3),    (5), 

(6).     Other derivations of  this graph are  also  possible. 

Using   this granunar  it  is  very easy   to  prove   the 

Euler relation between  vertices,   meshes and  arcs  for 

the  generated planar graphs.     In  fact,   let  n   ,   n    and B       a 
n,    be   the numbers of   the  vertices   labelled  B,   a   and b 

in  a web W  generated by  the  grammar at some  step,   and 

let  us define  the  function   f = n„  +  n    +  n, .     It   is B a        la 
easy  to   verify by  simple  inspection  that   f  increases 

by one  if  rules 2-5  are  applied,   and increases by  two 

if  rules  1  or 6 are applied.     But  rules  1  and 6  are 

applied  exactly once,   and  the application of any  rule 

introduces one arc.     Thus,   if e  is  the  total  number 

of  arcs,   for every  terminal web we have       e  +  2  =  n    +  fV. / 

i.e.,   the Euler relation. 

By modifying  the  grammar of Fig.   5,   it  is easy   to 

obtain   the  grammar  for  nonseparable planar graphs  shown 

in Fig.   8.     This grammar  is  obtained from  the grammar in 

Fig.   5 by  introducing a   new  terminal  symbol   c.     Then  in 

rule  2,   instead of  simply disconnecting  two boundary  ver- 

tices,   they  are disconnected but at  the  same  time  are both 

connected  to a  c-vertex.     The  applicability condition of 

rule   5  assures  that boundary   vertices which have   already 

been  connected and   then  disconnected will   not be  connected 

again.     The  proof  that   this grammar actually works  is 

given in the  following Lemma  and Theorem. 

Lemma  2;     Let us consider any derivation of a  nonarc- 

composite planar graph  and of  its dual  according   to   the 

grammar of Theorem 6.     The  vertices of  the  graph   (of   the 
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dual) are labelled A(B) when they are on the boundary, 

and are rewritten with the terminal symbol ä(b) when 

they become internal vertices. Given an A-vertex P of 

the graph, a B-vertex Q of the dual has been connected 

to and disconnected from P during the derivation ex- 

actly as many times as the mesh corresponding to Q ap- 

pears   in  the   sequence  of meshes  of   P. 

Proof:     In  the   application of any   rule of   the  grammar 

of  Theorem 6 an  A-vertex and a B-vertex  appear  together 

in   the  right  or   left web  ot   the   rule   if   and   only  if   the 

arc   introduced  by   this   rule  is connected   to   the A-vertex 

and   is adjacent   to   the  mesh corresponding   to   the B-vertex 

In   fact,   in  Theorem  bit has been   shown   that   in  the de- 

rivation of any web   the   two arcs   introduced by any  rule 

are  corresponding arcs  of  a plane  graph   and  of  its dual. 

On   the other  hand,   in a   plane  nonarccomposite graph,   if 

a  mesh M appears  n   times  in  the mesh   sequence of a  ver- 

tex  P,   then   there exist  exactly 2n  arcs  connected to  P 

and   adjacent   to   M.      In   fact,   M cannot  be   adjacent   to 

the   same arc  on     both  sides,  by Theorem   5(b) .     Thus  in 

any  derivation  of this  graph,   the   vertex  P  and  the  ver- 

tex Q of  the  dual corresponding   to  M have  appeared  in 

the   same rewritten web  exactly  2n   times.     Note  now  that 

if  an A- and  a  B-vertex  are disconnected   (or  any of 

them does not  exist)   before  the application of  any  rule, 

then  they are  connected  afterwards,   and   if   they are 

connected before   the  application of   any  rule,   then  they 

are  disconnected   (and  possibly  relabelled)   afterwards. 

Therefore P  and  Q have  been connected  and disconnected 

exactly n  times.   // 
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Theorem  7:     The normal,   monotone grammar  of   Fig.   8  in- 

directly  generates  all nonseparable planar graphs. 

Proof;     According   to  Theorem   5(?-b),   the   class  of  non- 

separable  planar graphs  is  obtained  from   tho  class of 

nonarecomposite  planar graphs  by eliminating  all   the 

graphs with   the  same  mesh  adjacent  twice   to   the   same 

vertex,   and  adding   the one-arc  graph.     In  the  grammar 

of  Fig.   8,   this graph is  added as an   initial  graph, 

while   the  applicability condition of  rule   5,   according 

to Lemma   2,   does  not  allow   the  derivation  of graphs 

with   the   same mesh  adjacent   twice  to  the   .same   vertex.  // 

By  adding  some   simple  rules  to  the   grammar of 

Theorem  6,   it  is  possible   to  obtain a  grammar   that  gen- 

erates  ail  planar graphs,   as   proved  in   the   following 

theorem. 

Theorem  8;     The  normal,   monotone grammar  of  Fig.   9  in- 

directly  generates  exactly  all  planar  graphs. 

Proof:     All   planar  graphs.     Given  a  planar  graph   G, 

for  each  cut  vertex,   let  us  consider  tno  union of  all 

the  components having  more  than one arc:   and having 

the  given  cut  vertex   in  common;   this is  a   subgrapn oi 

G.     We obtain  in  this way  the  decomposition of  Q   into 

nonarccomposite  pieces  and one-arc graphs.     Now  let  us 

assume   that  there   is  at   least  one nonarccomposite  piece 

N  in   this decomposition;   otherwise G is  a   tree  and  can 

be obtained  from  the   initial  web '       t   by  applying  rule   7, 

as  in   the grammar   for binary   trees  in  Section   2.     N can 

be  constructed using   the   initial web ?  and   rules   1   -   6. 
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All   the  one-arc  graphs   (*)   having a  cut  vertex   in  common 

with  N  can  then be  constructed using  rule 7     or 3 . 

Rule  8     must be  used   (case   (a))   if  the  other  vertex of 

the one-arc graph  is a cut  vertex belonging  to  a   non- 

arccomposite  piece,   rule 7     if  the other vertex does not 

belong   to  such a  piece,  but   is  either   (case   (b))   a   cut 

vertex common   to one or more  other one-arc graphs or 

(case   (c))   is not a cut vertex.     In case   (a),   a   new non- 

arccomposite piece  can be derived  using  rules   1-6, 

and  in  case   (b)   the new one-arc components can be de- 

rived  using  rule    7       This  procedure  can be iterated 

until  all  the  components have been derived.    In  fact, 

the graph  is connected,   and  if  some  component would 

have more  than one cut  vertex  in  common with  the  al- 

ready derived components,   a  circuit of graphs would be 

present,   which would constitute a   single nonseparable 

component  ([5],   Th.   16). 

Only planar graphs.    The application of rule 

7     to  any  terminal or nonterminal web  surely  leaves 

planar   the  subweb  consisting  of all   the a-vertices. 

The application of rule 8 generates  a new S-vertex, 

from which a  new nonarccomposite  component can be 

generated.     The derivation of   this  component docs  not 

interfere with  the derivation  of  any other component, 

because   the A-B  circuit generated for   this component 

has no  vertex  in  common with   the A-B  circuit of  any other compo- 

* Note   that,  by  construction,   only one-arc components  can 
have  a  common  vertex with  N. 
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nent.  This  property  can be  proved by  induction:   it  is 

true   for   the  firsc A-B  circuit generated by  rule   1, 

and  rules  2     - 6     apply only   to A- and  B-vertices be- 

longing   to  the  same circuit.     Thus  the  assertion   fol- 

lows   from  the  fact   that   if   the components  of a   graph 

are planar,   the graph    is  planar   ([5],   Th.   27).   // 

An   interesting  class  of  problems   in graph   theory 

is concerned with  the   least number of  colors necessary 

for coloring   the   vertices  of   the graphs of  a  given  family 

in such a way  that  every arc  connects   vertices of dif- 

ferent  color.    An  especially  challenging  problem arises 

in  the  case of planar graphs.     For  this  family  of graphs, 

five  colors have been proved  sufficient,   and  four  colors 

necessary;   the  so-called  four color conjecture   says that 

four colors are also  sufficient.     The  proof of   this con- 

jecture can easily be  shown equivalent   to determining  if 

the  languages of  two web  grammars G.   and G„  are  equal. 

G.   is   the  grammar   in Fig.   5   (*).     In G   ,   every   rule  is 

concerned with a   pair of A-vertices which can   possibly 

be generated or  relabelled by   the  rule.     In any  case,   the 

arc created by the  rule connects either A-vertices or cor- 

responding  relabelled  vertices.     G.  is  derived   from G. 

by  the   following  procedure.     Instead of  the nonterminal 

symbol A,   four symbols A   ,   A   ,  A    and A     are  used.. 

Twelve  rules are  substituted  for each  of  the  rules  2, 

3  and   5,   such  that all  the  possible pairs of different 

symbols among  the   four symbols A    A    A.   and A     replace 

(*)     It  is obvious  that  if any nonarccomposite  planar 

graph were  four colorable,   the same would be  true 

for any planar graph. 

am 
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the  pair  of A   symbols.    Only   six  rules  need   to be   sub- 

stituted   for  each  of  the  rules  1,   4,   6,   because of 

symmetry.     The   language of  this  second  grammar  is 

clearly   the  class  of  nonarccomposite   four-colorable 

planar  graphs   {*) .     In  fact,   any derivation  in G-   has 

a  parallel derivation  in G     and defines  a  coloring of 

the   terminal  graph,   while giv^n a  derivation  in G,,   and 

a  coloring of   the   terminal  graph,   a  derivation  in   G- 

can be   found. 

(*)     In  general,   by  using  n  new  symbols,   the  class of  non- 

arccomposite  n-colorable   planar  graphs is obtained. 
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Figure captions 

Fig. 1  - This normal, context sensitive web grammar 
generates exactly all the nonseparable graphs 

Fig. 2  - This normal, context-free web grammar generates 
exactly all the separability webs 

Fig. 3  - This normal, monotone web grammar, given a 
separability web as initial web, indirectly 
generates exactly all the separable graphs 
having the given web as separability web. 
Note the applicability condition on rule 10 

Fig. 4  - This graph cannot be planar 

Fig. 5 - This normal, n .\otonc web grammar indirectly 
generates exactly all nonarccomposite planar 
qraphs 

Fig. 6  - Superposition of the A-B circuit and of the 
cut curve in applying the rules of the grammar 
in Fig. 5 

Fig. 7 - An example of application of the web grammar 
in Fig, 5 

Fig. 8  - This normal, monotone web grammar indirectly 
generates exactly all nonseparable planar 
graphs.  Note the applicability condition on 
rule 5 

Fig. 9 - This normal, monotone web grammar indirectly 
generates exactly alj. planar graphs 



VN =   {A}      ;      VT =   {t} 

t     t ■ (Y ■ 

Rewriting  rules: 

A 1) A A A A 

A A A    A    A 
•—  •         ^       Ä^— • • 

3) t 

Fig. 1.  This normal, context sensitive web grammar 
generates exactly all the nonseparable graphs 

Note: In all of the figures, the vertices that correspond 
under the normal embedding are shown in correspond- 
ing positions. 



VN = (s, A)  : VT = {i, c] 

I ■ (si 

Rewriting rules: 

1) 

3) 

4) 

S S 

2) 
S i 

• 

A A 
•  >    •- 

A                        c         S 
•  >   i • 

Fig. 2.  This normal, context free web grammar 
generates exactly all the separability 
webs 



VN = {I, A. B]  ;  VT = {a. b, c]  ;  VL = {c] 

I = (any separability web; irternal vertices labelled I, cut 
vertices labelled c] 

Rewriting rules: 

1) 

c« 

ll 

c   • 

3) 

C»" 

c • 

5) 

c* 

B 

Cr- 

C    • 

2) 

c  • 

4) 

6) 

8) 

c f 

B 
i 

c ■ 

B 

c^>   A 

c 

/bl 

I 
B 

\ 

c   • 

■>        Bi 
c/ 

9) 
B b 

10) 

b (applies only  if  the   vertex   labelled 
A  is  not  connected   to  anything  else) 

Fig.   3.     This  normal,  monotone web grammar,   given a 
separability web as  initial web,   indirectly 
generates exactly all   the  separable graphs 
having   the given web as   separability web. 
Note   the applicability condition on  rule   10, 



Fig.  4,     This graph cannot be planar 



VN = {S, A, B]  ; VT 

I ■ {sj 

Rewriting rules: 

{a,  b]     ;   VL={a} 

1) 
i 

3) 

B B 

Fig. 5. This normal, monotone web grammar indirectly 
generates exactly all nonarccomposite planar 
graphs 



Rule 1 Rule 2 

B 

Rule 3 Rule 4 

a 4 

b 
—• 

Rule 5 Rule 6 

Fig. 6.  Superposition of the A-B curcuit and 
of the cut curve in applying the rules 
of the grammar in Fig. 5 



a) 

B    / 

O 

e) 

Fig.   7.    An example of application of the web grammar 
in Fig.   5 



VM = {S, A, B}  ; V = {a, b, c]  ; V = f a] 
N 

I = fS. a a} 

Rewriting rules: 

1) 
§ 

(applies only if  the  upper 
A-vertex and  left B-vertex 
are  not connected  to   the 
same  c-vertex) 

b 

Fig. 8.  This normal, monotone web grammar indirectly 
generates exactly all nonseparable planar graphs 
Note the applicability condition on rule 5. 



VN =   {S,   A,   B}      ;   VT =   {a.   b}      ;   VL =   {a} 

X -  {•,     a    a) 

Rewriting   rules: 

S 
0 

1) 

7) 

a 

a * 

a a 
-• 

8) 

a a s 

Fig. 9.  This normal, monotone web grammar indirectly 
generates exactly all planar graphs 
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